

CHARACTERIZATION METHODOLOGY OF PIPELINE WELD JOINTS UNDER HYDROGEN ATMOSPHERE USING MINIATURE SAMPLES

Said BELKACEMI | Center for Materials Sciences | Mines Paris – PSL Directeur(s) de thèse : Y. MADI

Said.belkacemi@minesparis.psl.eu

Context: Towards a European hydrogen ecosystem

Hydrogen's potential is now foremost in everyone's minds: as a direct solution for the decarbonization of industry, a source of reindustrialization and a lever for energy self-sufficiency. It seems to be the ISSUE of climate change.

 \checkmark The European Commission has proposed to produce 10 million tonnes of renewable hydrogen by 2030 and import 10

Challenges

The transition of the existing natural gas grid infrastructures is the solution proposed for hydrogen transport and storage. \checkmark The natural gas pipelines are made of steel which are not designed for hydrogen transportation and are susceptible to (degradation of hydrogen embrittlement mechanical properties)

 \checkmark To avoid catastrophic failures and ensure pipelines safety, it is of the utmost importance to study the mechanical properties under hydrogen environment.

million tonnes by 2030.

DEVELOPMENT OF NEW METHODOLOGY FOR MECHANICHAL CHARACTERIZATION UNDER HYDROGEGN GAS

Material and Microstructure

API 5L X52 vintage pipeline steel and their weld joint Complex microstructure in weld joint due to the weldment process

Micrography observation of

Development of new setup and methodology Experimental setup

- Servo-hydraulic tensile frame
- Load cell 5kN
- Small pressurized chamber (up to 250 bar
- Four Sapphire windows
- No need for ATEX environment (Low Vol)
- Small displacement rate (0.3µm/min)
- Oxygen and moisture analysers

Testing methodology

Optical extensometers using Edge Tracing (ET) are used to control testing machine.

MECHANICAL CHARACTERIZATION OF PIPELINE STEELS AND THEIR WELDS USING SUB-SIZE SPECIMENS

Use of sub-size specimens for mechanical testing

Tensile testing : mST and mNT specimens Fracture toughness testing : mDCT specimens All specimens were machined from BM, WM and HAZ

Application to study Hydrogen embrittlement

- Application of the new setup and methodology to hydrogen embrittlement under 200 bar of hydrogen gas.
- Results obtained on mNT show the effect of hydrogen of mechanical tensile properties (loss of ductility and apparition of QC surface)

- The edge tracing technique applied on sub-size specimens was successfully achieved under air: tensile and fracture resistance tests were successfully performed without mechanical extensometer
- The tensile tests performed on base metal show a a mechanical behavior differences between the core and the surfaces
- Tensile tests under gaseous hydrogen using miniature specimen show a loss in ductility and the apparition of QC surface (hydrogen embrittlement).

MANNESMANN **edf Air Liquide** Industrial partners: TRANSVAL OR

MESSIAH Chair holders:

